New Mexico Tech/METTOP Lead Free Solder Project

Aging Aircraft 2008

METTOP Lead-Free Solder Research Team

• Stephen Bracht, Electrical Engineer

• Lisa Salerno, Material's Engineer

• Aghavni Ball, Electrical Engineer

History Overview

 METTOP- Micro Electronics Testing and Technology Obsolescence Program

- Began studying lead-free solder in 2007

METTOP

Energetic Materials Research and Testing Center METTOP

LEAD-Free Group

- NMT Collaborations
 - NSWC Crane/Purdue/SAIC: Project 1722
 - NMT emphasis on solder joint reliability, particularly vibration

LEAP-WG

- NMT involved since September 2007
- LEAP-WG includes members from all stakeholders

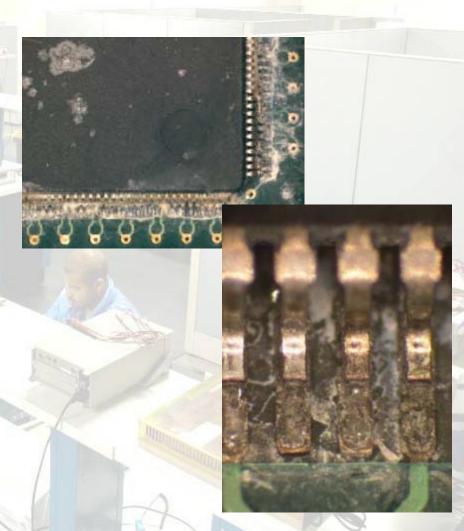
• Addresses lead-free issues that are unique to aerospace and military, and within control of aerospace and military

NMT Vibration Testing

Follow-on project to JCAA/JGPP vibration test

 Vibrating salt fog PCB boards from JCAA/JGPP project

Added stiffeners and more accelerometers


Salt Fog Boards


Salt Fog Boards

- Corrosion between leads
- Lifting of leads
- Issue seems limited to TQFP-208s

Damage Assessment

Failed Components

 Nineteen parts had failed before vibration took place

 Three of these were bad before the salt-fog study

 The remaining sixteen failed due to corrosion from salt fog residue

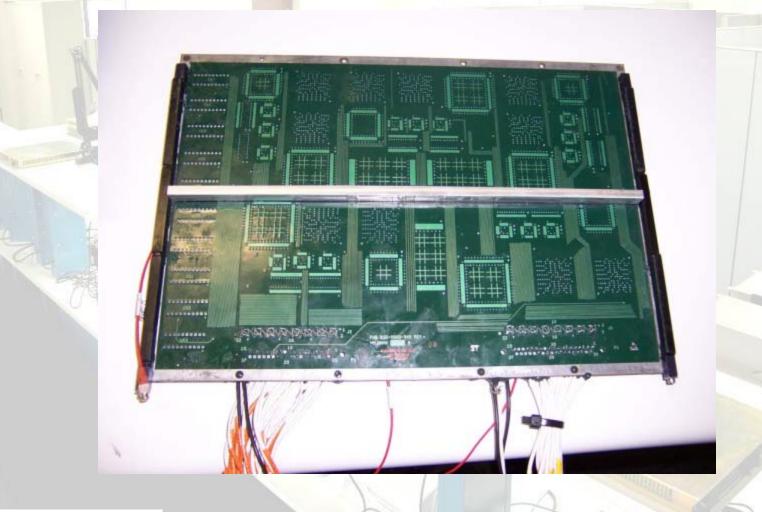
Test Plan

- Stiffen the nine boards given to us from JGPP 1 study
- Vibrate based on the original Woodrow study at Boeing
- Evaluate
 - See reduction in deflection
 - Effects on solder joint reliability

Modal Analysis

- CirVibe Software
 - For pre-test modal analysis
 - To determine stiffener and accelerometer placement

Types of Stiffeners

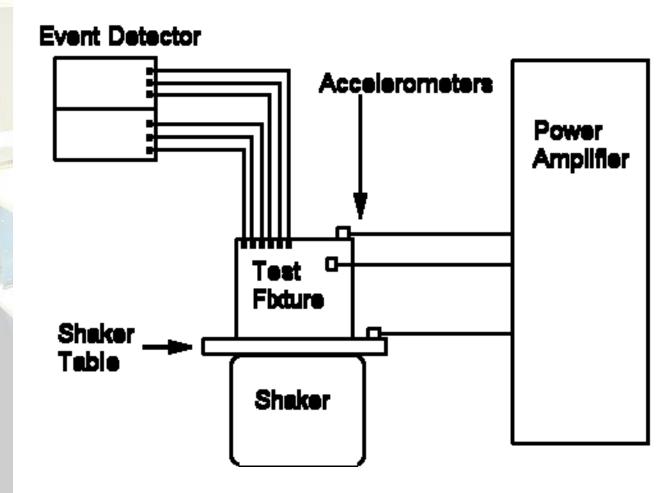

 Stiffeners- used to suppress resonance at a particular forcing frequency

• Used CirVibe to determine stiffener placement

Adhered using adhesive

Stiffener Placement

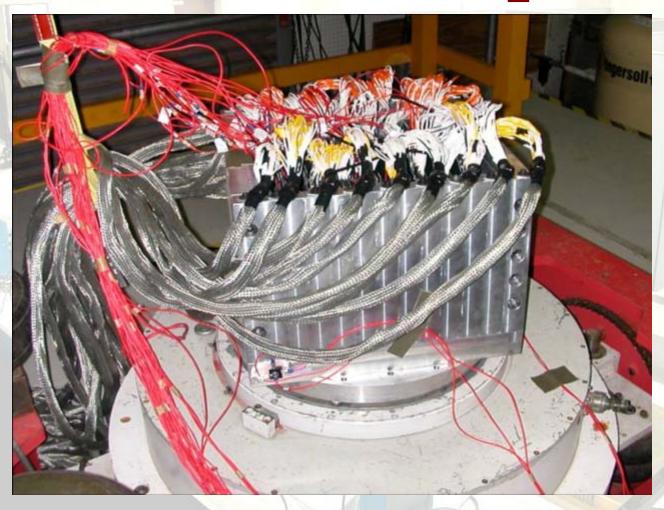
Energetic Materials Research and Testing Center METTOP


Accelerometer Placement

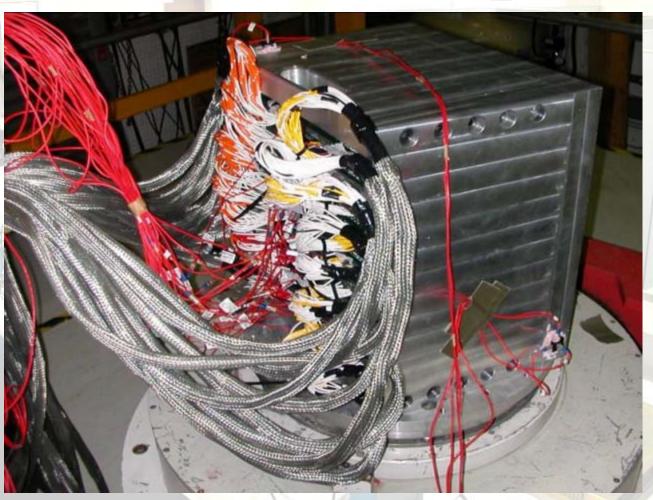
Energetic Materials Research and Testing Center METTOP

Test set up

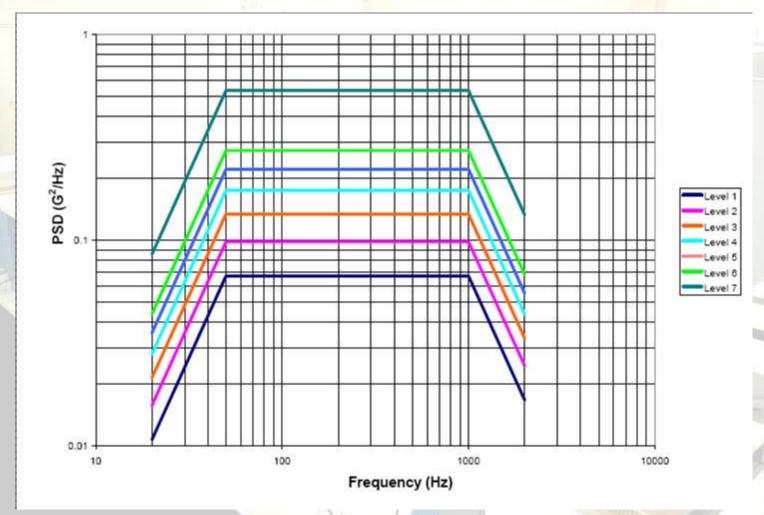
Event Detectors



Y-Axis setup

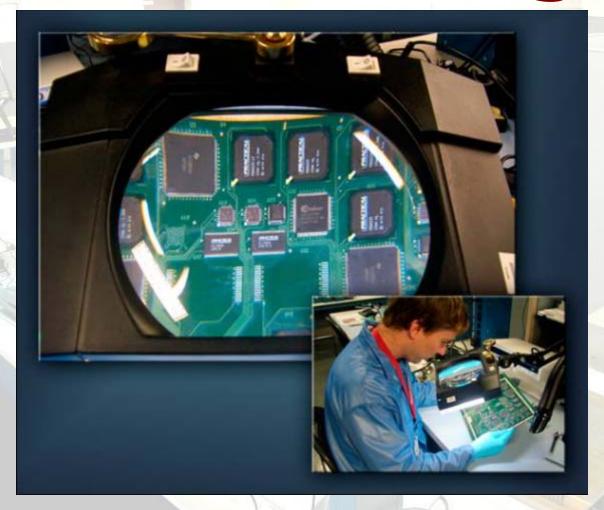


X-Axis setup



Z-Axis Setup

Vibration Test levels



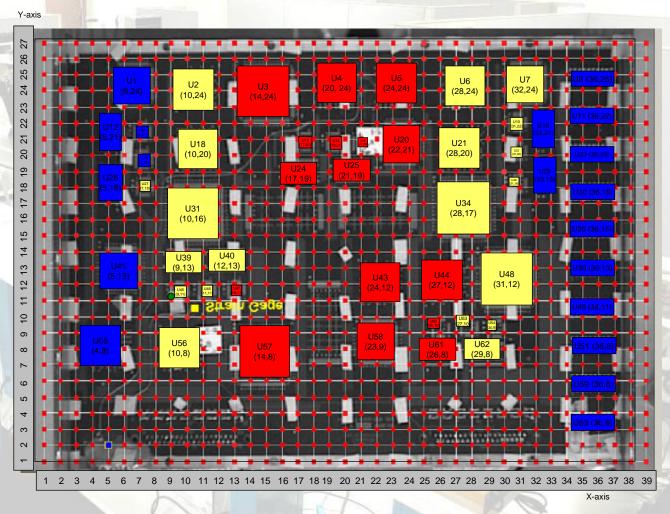
Woodrow, T., Modeling of the JCAA/JG-PP Lead-Free Solder Project Vibration Test Data

Energetic Materials Research and Testing Center METTOP

Post Test Damage

Results

• Overall decrease in failures from original JGPP study, despite stiffeners not staying attached.


Axis	Test Level	%Failed (JCAA/JGPP)	%Failed (METTOP)	# of Stiffeners at end of level	
Y-axis	9.9 Grms	0	0	9	
X-axis	9.9 Grms	0	0	8	
Z-axis	9.9 Grms	7.7	5.5	4	
Z-axis	12.0 Grms	17.7	9.9	0	
Z-axis	14.0 Grms	29.2	17.2	0	
Z -axis	16.0 Grms	39.1	26.1	0	
Z-axis	18.0 Grms	46.9	33.0	0	
Z-axis	20.0 Grms	55.6	43.1	0	
Z-axis	28.0 Grms	68.4	54.2	0	

Strain Region Analysis

Russell, Fritz,
 Latta: assign
 strain regions
 to PCB board.

Easier to
 compare
 components
 within strain
 regions.

Energetic Materials Research and Testing Center METTOP

Comparison of Results

Zone	Solder	JGPP Study							
		TQFP-208	TQFP-144	PLCC-20	TSOP-50	PDIP-20	CLCC-20	BGA-225	
Center	SAC								
	SACBi								
	SnPb								
Low	SAC								
	SACBi								
	SnPb								
Edge	SAC	100							
	SACBi								
	SnPb	40							
	SnCu		. 6						
		NMT Study							
Zone	Solder	TQFP-208	TQFP-144	PLCC-20	TSOP-50	PDIP-20	CLCC-20	BGA-225	
Center	SAC					100			
	SACBi								
	SnPb					100			
Low	SAC					10			
	SACBi					955			
	SnPb								
Edge	SAC								
	SACBi	M		1		T. School			
	SnPb	1							
	SnCu	200		1			The same	In State of the last	

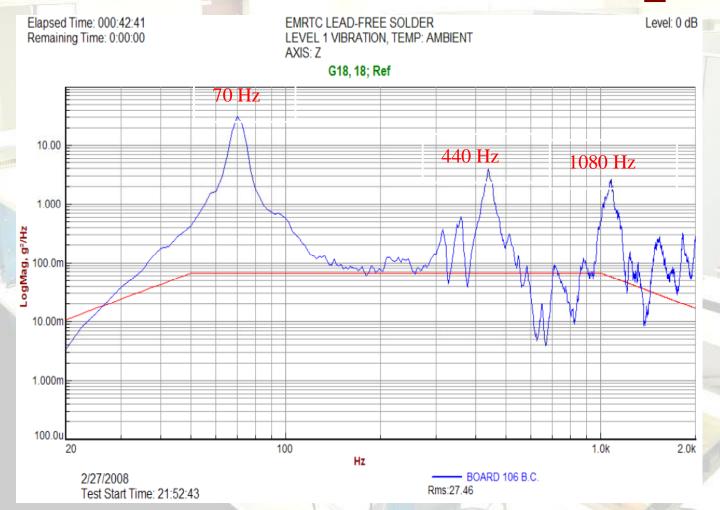
Overall Observations

Markedly fewer failures than JGPP study

SnPb performed best, followed by SACBi

SAC consistently performed worst

Accelerometer Data


 Accelerometers revealed three distinct resonances

 Accelerometer placement appeared to work well

Further analysis being conducted

Accelerometer Graph

Questions?

References

- Tom Woodrow, "JCAA/JG-PP Lead-Free Solder Project: Vibration Test," Report EM/P-582, Rev A, January 9, 2006
- S. Pepe and L. Whiteman, "Environmental Exposure of JG-PP/JCAA Test PWAs", January 31, 2005
- Bill Russell, Dennis Fritz and Gary S. Latta, "Methodology for Evaluating Data for "Reverse Compatibility" of Solder Joints", SMTA International, October, 2007

